Natural Conjugate Gradient in Variational Inference
نویسندگان
چکیده
Variational methods for approximate inference in machine learning often adapt a parametric probability distribution to optimize a given objective function. This view is especially useful when applying variational Bayes (VB) to models outside the conjugate-exponential family. For them, variational Bayesian expectation maximization (VB EM) algorithms are not easily available, and gradient-based methods are often used as alternatives. Traditional natural gradient methods use the Riemannian structure (or geometry) of the predictive distribution to speed up maximum likelihood estimation. We propose using the geometry of the variational approximating distribution instead to speed up a conjugate gradient method for variational learning and inference. The computational overhead is small due to the simplicity of the approximating distribution. Experiments with real-world speech data show significant speedups over alternative learning algorithms.
منابع مشابه
Variational Inference on Deep Exponential Family by using Variational Inferences on Conjugate Models
In this paper, we propose a new variational inference method for deep exponentialfamily (DEF) models. Our method converts non-conjugate factors in a DEF model to easy-to-compute conjugate exponential-family messages. This enables local and modular updates similar to variational message passing, as well as stochastic natural-gradient updates similar to stochastic variational inference. Such upda...
متن کاملNatural Gradients in Practice: Non-Conjugate Variational Inference in Gaussian Process Models
The natural gradient method has been used effectively in conjugate Gaussian process models, but the non-conjugate case has been largely unexplored. We examine how natural gradients can be used in non-conjugate stochastic settings, together with hyperparameter learning. We conclude that the natural gradient can significantly improve performance in terms of wall-clock time. For illconditioned pos...
متن کاملNatural-Gradient Stochastic Variational Inference for Non-Conjugate Structured Variational Autoencoder
We propose a new variational inference method which uses recognition models for amortized inference in graphical models that contain deep generative models. Unlike many existing approaches, our method can handle non-conjugacy in both the latent graphical model and the deep generative model, and enables fully amortized inference at test time. Our method is based on an extension of a recently pro...
متن کاملConjugate-Computation Variational Inference: Converting Variational Inference in Non-Conjugate Models to Inferences in Conjugate Models
Variational inference is computationally challenging in models that contain both conjugate and non-conjugate terms. Methods specifically designed for conjugate models, even though computationally efficient, find it difficult to deal with non-conjugate terms. On the other hand, stochastic-gradient methods can handle the nonconjugate terms but they usually ignore the conjugate structure of the mo...
متن کاملKullback-Leibler Proximal Variational Inference
We propose a new variational inference method based on a proximal framework that uses the Kullback-Leibler (KL) divergence as the proximal term. We make two contributions towards exploiting the geometry and structure of the variational bound. Firstly, we propose a KL proximal-point algorithm and show its equivalence to variational inference with natural gradients (e.g. stochastic variational in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007